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Abstract
Gaussian process priors can be used to define flexible, probabilistic classification models. Unfor-
tunately exact Bayesian inference is analytically intractable and various approximation techniques
have been proposed. In this work we review and compare Laplace’s method and Expectation Prop-
agation for approximate Bayesian inference in the binary Gaussian process classification model.
We present a comprehensive comparison of the approximations, their predictive performance and
marginal likelihood estimates to results obtained by MCMC sampling. We explain theoretically and
corroborate empirically the advantages of Expectation Propagation compared to Laplace’s method.

Keywords: Gaussian process priors, probabilistic classification, Laplace’s approximation, expec-
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1. Introduction

In recent years models based on Gaussian process (GP) priors haveattracted much attention in the
machine learning community. Whereas inference in the GP regression model with Gaussian noise
can be done analytically, probabilistic classification using GPs is analytically intractable, see Ras-
mussen and Williams (2006) for a general overview. Several approaches to approximate Bayesian
inference have been suggested, including Laplace’s method, Expectation Propagation (EP), varia-
tional approximations and Markov chain Monte Carlo (MCMC) sampling, some of these in con-
junction with generalisation bounds, online learning schemes and sparse approximations (e.g. Neal,
1998; Williams and Barber, 1998; Gibbs and MacKay, 2000; Opper and Winther, 2000; Csató and
Opper, 2002; Seeger, 2002; Lawrence et al., 2003).

Despite the abundance of recent work on probabilistic GP classifiers, most experimental studies
provide only anecdotal evidence, and no clear picture has yet emerged, as to when and why which
algorithm should be preferred. Thus, from a practitioners point of viewit is unclear what the method
of choice is for probabilistic GP classification. In this work, we set out to understand and compare
two of the most wide-spread approximations: Laplace’s method and Expectation Propagation (EP).
We also compare to a sophisticated, but computationally demanding MCMC scheme, which be-
comes exact in the limit of long running times. We do not address issues of sparsification but stick
to comparing the two types of approximation.

We examine two aspects of the approximation schemes: Firstly the accuracy ofapproximations
to the marginal likelihood which is of central importance for model selection andmodel comparison.
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In any practical application of GPs in classification (usually multiple) parameters of the covariance
function (hyper-parameters) have to be handled. Bayesian model selection provides a consistent
framework for setting such parameters. Therefore, it is essential to evaluate the accuracy of the
marginal likelihood approximations as a function of the hyper-parameters, inorder to assess the
practical usefulness of the approach. The related question of whetherthe marginal likelihood cor-
relates well with the generalisation performance cannot be answered in general but depends on the
appropriateness of the model for a given data set. However, we do assess this empirically for two
data sets.

Secondly, we need to assess the quality of the approximate probabilistic predictions. In the
past, the probabilistic nature of the GP predictions has not received much attention, the focus being
mostly on classification errorrates. This unfortunate state of affairs is caused primarily by typical
benchmarking problems being considered outside of a realistic context. Theability of a classifier
to produce class probabilities or confidences, have obvious relevancein most areas of application,
e.g. medical diagnosis and ROC analysis. We evaluate the predictive distributions of the approxi-
mate methods, and compare to the MCMC gold standard.

2. The Gaussian Process Model for Binary Classification

In this section we describe the Gaussian process model for binary classification (GPC). Lety ∈
{−1,1} denote the class label corresponding to an inputx. The GPC model is discriminative in the
sense that it modelsp(y|x) which for fixedx is a Bernoulli distribution. The probability of success
p(y=1|x) is related to an unconstrained latent functionf (x) which is mapped to the unit interval
by a sigmoidal transformation, e.g. thelogit or theprobit. Both mappings are relatively similar
around zero but show different tail behaviour. We will not examine the difference in this study.
For reasons of analytic convenience (for the EP algorithm) we exclusively use the probit model
p(y= 1|x) = Φ( f (x)), whereΦ denotes the cumulative density function of the standard normal
distribution.

In the GPC model Bayesian inference is performed about the latent function f in the light of
observed dataD = {(yi ,xi)|i =1, . . . ,m}. Let fi = f (xi) andf = [ f1, . . . , fm]> be shorthand for the
values of the latent function andy = [y1, . . . ,ym]> andX = [x1, . . . ,xm]> collect the class labels and
inputs respectively.

Given the latent function, the class labels are independent Bernoulli variables, so the joint like-
lihood factorises:

p(y|f) =
m

∏
i=1

p(yi | fi) (1)

and depends onf only through its value at the corresponding observed inputs. For the probit model
the individual likelihood terms becomep(yi | fi) = Φ(yi fi), due to the symmetry ofΦ.

As prior over functionsf we use a zero-mean Gaussian process (GP) prior (O’Hagan, 1978).
A GP is a stochastic process where each inputx has an associated random variablef (x). The
joint distribution of function values corresponding to any set of inputsX is multivariate Gaussian
p(f|X,θ) = N (f|0,K). The covariance matrix is defined element-wise,K i j = k(xi ,x j ,θ) wherek
is a positive definite covariance function parameterised byθ. Note that by choosing a covariance
function we introducehyper-parametersθ to the prior. The zero-mean GP prior encodes thata
priori p(y=1|x) = 1/2 and certain further beliefs about the characteristics of the latent function.
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For details on covariance functions and their implications on the prior over functions see for example
Abrahamsen (1997) or Rasmussen and Williams (2006, ch. 4).

Using Bayes’ rule the posterior distribution over the latent function valuesf for given hyper-
parametersθ becomes:

p(f|D,θ) =
p(y|f) p(f|X,θ)

p(D|θ)
=

N (f|0,K)

p(D|θ)

m

∏
i=1

Φ(yi fi) (2)

which is non-Gaussian. Properties of the posterior will be described in Section 5.
The main purpose of classification models is to predict the class labely∗ for test inputsx∗. The

distribution of the latent function value can be computed by marginalisation:

p( f∗|D,θ,x∗) =
Z

p( f∗|f,X,θ,x∗)p(f|D,θ)df, (3)

and by computing the expectation:

p(y∗|D,θ,x∗) =
Z

p(y∗| f∗)p( f∗|D,θ,x∗)d f∗ (4)

the predictive distribution is obtained, which is again a Bernoulli distribution. The first term in the
right hand side of equation (3) is Gaussian and obtained by conditioning thejoint Gaussian prior
distribution.

Unfortunately, neither the posterior eq. (2)p(f|D,θ), the predictive distribution eq. (4)p(y∗=
1|D,θ,x∗) nor the marginal likelihood eq. (7)p(D|θ) can be computed analytically, so approxima-
tions are needed. For the GPC model approximations are either based on a Gaussian approximation
q(f|D,θ) = N (f|m,A) to the posteriorp(f|D,θ) or involve Markov chain Monte Carlo (MCMC)
sampling.

A key insight is that a Gaussian approximation to the posterior implies a GP approximation to
the posterior process, which gives rise to an approximate predictive distribution for test cases. Intro-
ducing the approximate Gaussian posterior into eq. (3) gives the approximate posteriorq( f∗|D,θ,x∗)=
N ( f∗|µ∗,σ2

∗), with mean and variance:

µ∗ = k>∗ K−1m (5a)

σ2
∗ = k(x∗,x∗)−k>∗ (K−1−K−1AK−1)k∗, (5b)

wherek∗ = [k(x1,x∗), . . . ,k(xm,x∗)]
> is a vector of prior covariances betweenx∗ and the training

inputsX. For the probit likelihood the approximate predictive probability (4) ofx∗ belonging to
class 1 can be computed analytically:

q(y∗=1|D,θ,x∗) =
Z

Φ( f∗)N ( f∗|µ∗,σ2
∗)d f∗ = Φ

( µ∗√
1+σ2

∗

)

. (6)

The parametersm and A of the posterior approximation can be found using Laplace’s method
(Section 3) or by Expectation Propagation (Section 4).

We have introduced the hyper-parametersθ which we considered to be fixed. Typically very
little information about these parameters is availablea priori. In principle inference should be done
jointly over f andθ which can only be approximated using Markov chain Monte Carlo sampling.
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However, a model selection approach can be implemented by selectingθ maximising the marginal
likelihood (evidence):

p(D|θ) =
Z

p(y|f) p(f|X,θ)df (7)

which can be understood as a measure of the agreement between the modeland observed data
(Kass and Raftery, 1995; MacKay, 1999). This approach is called maximum likelihood II (ML-
II) type hyper-parameter estimation and motivates the need for computing the marginal likelihood.
Laplace’s method as well as Expectation Propagation provide an approximation to the marginal
likelihood (7) and so approximate ML-II hyper-parameter estimation can be implemented in both
approximation schemes.

3. Laplace’s Method

Williams and Barber (1998) describe Laplace’s method to find a GaussianN (f|m,A) approximation
to the posterior over latent function values (2) for fixedθ (although they use thelogit likelihood).
Let lnL(f) = ln p(y|f) denote the log likelihood and:

lnQ (f|D,θ) = lnL(f)− 1
2

ln |K |− 1
2

f>K−1f−m
2

ln(2π) (8)

the unnormalised log posterior. Laplace’s approximation is found by a second order Taylor expan-
sion:

lnQ (f|D,θ)' lnQ (m)− 1
2
(m− f)>A−1(m− f) (9)

around the mode of the (log) posterior:

m = argmax
f∈Rm

lnQ (f|D,θ). (10)

Since both the likelihood and the prior are log-concave the posterior is also log-concave and uni-
modal. Let:

∇f lnQ = ∇f lnL(f)−K−1f (11a)

∇∇f lnQ = ∇∇f lnL(f)−K−1 (11b)

denote the gradient and the Hessian. The mode is conveniently found usingNewton’s method,
iterating:

f ← f− (∇∇f lnQ (f))−1 ∇f lnQ (f), (12)

which usually converges rapidly tom. The covariance matrix:

A = −
(

∇∇f lnQ (m)
)−1

= (K−1 +W)−1 (13)

is approximated by the curvature at the mode, equal to the negative inverseHessian, whereW =
−∇∇f lnL .

This approximation also facilitates an approximation to the marginal likelihood:

p(D|θ) =
Z

p(y|f)p(f|X,θ)df =
Z

exp(lnQ (f))df. (14)
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Algorithm 1 Laplace’s approximation for GPC
Given: θ, D, x∗
Initialise f (e.g.f← 0), computeK from θ andX
repeat

f← f− (∇∇f lnQ (f))−1 ∇f lnQ (f)
until convergence off
m← f
A← (K−1−∇∇f lnQ (m))−1

Compute log marginal likelihood lnq(D|θ) by (15), and predictionsq(y∗=1|D,θ,x∗) using (6).

Substituting lnQ by its Taylor approximation (9) the Gaussian integral can be solved. The resulting
approximate log marginal likelihood is:

ln p(D|θ) ' lnq(D|θ) = lnQ (m)+
m
2

ln(2π)+
1
2

ln |A| (15)

and the derivative of this quantity w.r.t.θ can be derived and used for optimisation (e.g. using conju-
gate gradient methods) in an ML-II type setting. See Algorithm 1 for an overview and Appendix A
for details about our implementation.

4. Expectation Propagation

Minka (2001) proposed the iterative Expectation Propagation (EP) algorithm which can by applied
to GPC. EP finds a Gaussian approximationq(f|D,θ) = N (f|m,A) to the posteriorp(f|D,θ) by
moment matching of approximate marginal distributions. The starting point is an approximation
mimicking the factorising structure:

p(f|D,θ) =
p(f|X,θ)

p(D|θ)

m

∏
i=1

p(yi | fi) '
p(f|X,θ)

q(D|θ)

m

∏
i=1

t( fi ,µi ,σ2
i ,Zi) = q(f|D,θ), (16)

where throughout we usep to denote exact quantities andq approximations, and the terms:

t( fi ,µi ,σ2
i ,Zi) = ZiN ( fi |µi ,σ2

i ) (17)

are calledsite functions. Note that the site functions are approximating the likelihood (which nor-
malizes over observationsyi), with a Gaussian infi , so we cannot expect the site functions to
normalize, hence the explicit termZi is necessary. For notational convenience we hide thesite pa-
rameters µi , σ2

i andZi and writet( fi) instead. From (17) the Gaussian approximation (16) has mean
and covariance:

q(f|D,θ) = N (f|m,A), where m = AΣ
−1µ, and A = (K−1 +Σ

−1)−1, (18)

whereµ = (µ1, . . . ,µm)> andΣ = diag(σ2
1, . . . ,σ2

m) collect site function parameters. The EP algo-
rithm iteratively visits each site function in turn, and adjusts the site parameters tomatch moments
of an approximation to the posterior marginals. Thekth moment offi under the posterior is:

〈 f k
i 〉 =

1
p(D|θ)

Z

f k
i p(y|f)p(f|X,θ)df =

1
p(D|θ)

Z

f k
i p(yi | fi) p\i( fi)d fi (19)

1683



KUSS AND RASMUSSEN

where:
p\i( fi) =

Z

∏
j 6=i

p(y j | f j)p(f|X,θ)df\i (20)

is called thecavity distributionandf\i denotesf without fi . The marginalisation required to compute
the exact cavity distribution is intractable for the GPC model. The key step in the EP algorithm is
to replace the intractable exact cavity distribution with a tractable approximation based on the site
functions:

q\i( fi) =
Z

∏
j 6=i

t( f j)p(f|X,θ)df\i. (21)

The approximate cavity function comes in the form of an unnormalised Gaussianq\i( fi) ∝ N ( fi |µ\i,σ2
\i).

Multiplying both sides byt( fi):

q\i( fi)t( fi) =
Z

N (f|0,K)
m

∏
j=1

t( f j)df\i ∝ N ( fi |mi ,A ii ), (22)

and basic Gaussian identities give the parameters:

σ2
\i =

(

(A ii )
−1−σ−2

i

)−1
and µ\i = σ2

\i

(

mi

A ii
− µi

σ2
i

)

, (23)

of the approximate cavity function.
The core idea of EP is to adjust the site parametersµi , σi andZi so that the approximate posterior

marginal using the exact likelihood approximates as well as possible the posterior marginal based
on the site function:

q\i( fi)p(yi | fi) ' q\i( fi)t( fi ,µi ,σ2
i ,Zi) (24)

by matching the zeroth, first and second moments. Recall that matching of momentsminimizes
Kullback-Leibler (KL) divergence.1 For the probit likelihoodp(yi | fi) = Φ(yi fi) thek = 0,1,2 mo-
ments of the left hand side can be computed analytically

m0 = Φ
( yµ\i√

1+σ2
\i

)

= Φ(z), (25a)

m1 = µ\i +
σ2
\iN (z|0,1)

Φ(z)y
√

1+σ2
\i

, (25b)

m2 = 2µ\im1−µ2
\i +σ2

\i−
zσ4
\iN (z|0,1)

Φ(z)(1+σ2
\i)

, (25c)

wherez= yµ\i/
√

1+σ2
\i. By equating these moments with those of the right hand side of (24) the

update equations for the site parameters become

σ2
i =

(

(m2−m2
1)
−1−σ−2

\i

)−1
, (26a)

µi = σ2
i

(

m1(σ−2
\i +σ−2

i )− µ\i
σ2
\i

)

, (26b)

Zi = m0

√

2π(σ2
\i +σ2

i )exp

(

(µi−µ\i)2

2(σ2
\i +σ2

i )

)

. (26c)

1. Although, the classical KL argument only applies to the first and second (and higher) moments fornormalized
distributions, it seems natural also to match zeroth moment.
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Algorithm 2 EP for Gaussian process classification
Given: θ, D, x∗
Initialise: A← K and site parametersσ2

i andµi

repeat
for i=1,. . . ,mdo

Compute parameters (23) of cavity
Compute moments (25)
Update the site parameters using (26)
Updatem andA according to (18)

end for
until The site parameters converged
Compute log marginal likelihood lnq(D|θ) by (27), and predictionsq(y∗=1|D,θ,x∗) using (6).

In the application of EP, one may generally not have a guarantee that the new site variance in (26a)
is non-negative; however, in the GPC model with probit likelihood, one canshow that variance is
always positive. Once we have new values forµi andσ2

i we have to updatem andA according to
(18), which in practise is done using rank-one updates, to save computation.

The EP algorithm iteratively updates the site parameters as shown in Algorithm 2. Although
we cannot prove the convergence of EP, we conjecture that it alwaysconverges for GPC with probit
likelihood, and have never encountered an exception.

Finally the approximate log marginal likelihood can be obtained from the normalization of (16),
giving

ln p(D|θ) ' lnq(D|θ) = ln
Z

q(f|X,θ)
m

∏
i=1

t( fi)df (27)

=
n

∑
i=1

lnZi−
1
2

ln |K+Σ|− 1
2
µ>(K+Σ)−1µ−m

2
ln(2π).

Perhaps this is not the standard way to compute an approximation to the marginallikelihood used
elsewhere, but it seems the most natural given the approximation. The derivatives of the log marginal
likelihood can be computed in order to implement ML-II parameter estimation ofθ. Algorithm 2
summarises the computations, more details on implementing EP for GPC can be foundin Ap-
pendix B.

5. Structural Properties of the Posterior

In the previous sections we described the GPC model and two alternative approximation schemes
for finding a Gaussian approximation to the posterior. This section providesmore details on the
properties of the posterior which is compared to the structure of the respective approximations.

Figure 1(a) provides a one-dimensional illustration. The priorN ( f |0,52) combined with the
probit likelihood (y = 1) results in a skewed posterior. Intuitively, the likelihood cuts off thef
values which have the opposite sign ofy. The mode of the posterior remains relatively close to the
origin, while the mass is placed over positive values in accordance with the observation. Laplace’s
approximation peaks at the posterior mode, but places far too much mass over negative values of
f and too little over large positive values. The EP approximation attempts to match the first two
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Figure 1: Panel (a) provides a one-dimensional illustration of approximations. The priorN ( f |0,52)
combined with the probit likelihood(y = 1) results in a skewed posterior. The likelihood
uses the right axis, all other curves use the left axis. In Panel (b) we caricature a high
dimensional zero-mean Gaussian prior as an ellipse. The gray shadow indicates that for
a high dimension Gaussian most of the mass lies in a thin shell. For large latent signals,
the likelihood essentially cuts off regions which are incompatible with the training labels
(hatched area), leaving the upper right orthant as the posterior. The dot represents the
mode of the posterior, which is relatively unaffected by the truncation and remains close
to the origin.

posterior moments, which results in a larger mean and a more accurate placement of probability
mass compared to Laplace’s approximation.

Structural properties of the posterior in higher dimensions can best be understood by examining
its construction. The prior is a correlatedm-dimensional GaussianN (f|0,K) centred at the origin.
Each likelihood termp(yi | fi) softly truncates the half-space from the prior that is incompatible with
the observed label, see Figure 1(b). The resulting posterior is unimodal and skewed, similar to a
multivariate Gaussian truncated to the orthant containingy. The mode of the posterior remains
close to the origin, while the mass is placed in accordance with the observed class labels. Addi-
tionally, high dimensional Gaussian distributions exhibit the property that mostprobability mass is
contained in a thin ellipsoidal shell—depending on the covariance structure—away from the mean
(MacKay, 2003, ch. 29.2). Intuitively this occurs since in high dimensionsthe volume grows ex-
tremely rapidly with the radius. As an effect the mode becomes less representative (typical) for the
prior distribution as the dimension increases. For the GPC posterior this property persists: the mode
of the posterior distribution stays relatively close to the origin, still being unrepresentative for the
posterior distribution, while the mean moves to the mass of the posterior making meanand mode
differ significantly.

As described, we cannot generally assume the posterior to be close to Gaussian, as in the often
studied limit of low-dimensional parametric models with large amounts of data. Therefore in GPC
we must be aware of making a Gaussian approximation to a non-Gaussian posterior. Laplace’s ap-
proximation is centred around the mode of the posterior, which lies in the right orthant but too close
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Figure 2: Panel (a) illustrates a bivariate normal distribution truncated to thepositive quadrant. The
lines describe slices through the probability density function for fixedx2-values. Panel (b)
shows the marginal distribution ofp(x1) (thick line) obtained by (numerical) integration
over x2, which—intuitively speaking—corresponds to an averaging of the slices (thin
lines) from Panel (a). Panel (c) shows a histogram of samples of a marginal distribution
of an high-dimensional truncated Gaussian. The line describes a Gaussian with mean and
variance estimated from the samples.

to the origin, such that the approximation will overlap with regions having practically zero posterior
mass. As an effect the amplitude of the approximate latent posterior GP will be underestimated
systematically, leading to overly cautious predictive distributions.

The EP approximation does not rely on a local expansion, but assumes that the marginal distri-
butions of the posterior can be well approximated by Gaussians. As described above the posterior
is similar to a high dimensional multivariate normal distribution truncated to one orthant. Although
the posterior is skew and truncated, marginals of such a distribution can be relatively similar to a
Gaussian.

As a low dimensional illustration the marginal distribution of a bivariate normal is shown in
Figure 2(a-b). Depending on the covariance structure, the mode of the marginal distribution moves
away from the origin and the distribution appear similar to a truncated univariate Gaussian.

In order to inspect the marginals of a truncated high-dimensional multivariatenormal distri-
bution we made an additional synthetic experiment. We constructed a 767 dimensional Gaussian
N (x|0,C) with a covariance matrix having one eigenvalue of 100 with eigenvector1, and all other
eigenvalues are 1. We then truncate this distribution such that allxi ≥ 0. Note that the mode
of the truncated Gaussian is still at zero, whereas the mean moved towards the remaining mass.
Metropolis-Hastings sampling was used to generate samples from this truncated multivariate distri-
bution. Figure 2(c) shows a normalised histogram of samples from a marginal distribution of one
xi . The samples agree very well with a Gaussian approximation. Note that Laplace’s method would
be completely inappropriate for approximating a truncated multivariate normal distribution.

In order to validate the above arguments we will use Markov chain Monte Carlo methods to
generate samples from the posterior and also to estimate the marginal likelihood.
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6. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) may be too slow for many practical applications, but has the
advantage that it becomes exact in the limit of long runs. Thus, MCMC can provide agold standard
by which to measure the two analytic methods of the previous sections. Computingthe predictions
via an MCMC estimate of (3) and (4) is relatively straight forward and covered in Section 6.1.

Good MCMC estimates of the marginal likelihood are, however, notoriously difficult to obtain,
being equivalent to the free-energy estimation problem in physics (Gelman and Meng, 1998). In
Section 6.2 we explain the use of Annealed Importance Sampling (AIS), whichcan be seen as a
sophisticated elaboration of Thermodynamic Integration, for this task.

6.1 Hybrid MCMC Sampling

Hybrid Monte Carlo (HMC) sampling as proposed by Duane et al. (1987) isa computationally
efficient sampling technique which exploits gradient information of the targetdistribution. Detailed
accounts are given by Neal (1993, ch. 5.2) and Liu (2001, ch. 9). MacKay (2003, ch. 30) also
provides pseudo-code; we do not repeat the details here.

HMC can be used to generate samples from the posteriorp(f|θ,D), while only the unnormalised
log posterior (8) and its derivatives are required. As described in the previous section, the exact
posterior (2) takes the form of a (correlated) Gaussian (the GP prior),which is (softly) truncated by
the constraints imposed by the training labels through the likelihood. To ease thesampling task by
reducing correlations, we first do a linear transformation into newg = L−1f variables, such thatg is
whitew.r.t. K , whereK = LL > is the Cholesky decomposition. Given samples from the posterior,
we generate test-latents from the Gaussianp( f∗|f,X,θ,x∗) for use in a simple Monte Carlo estimate
of (4).

6.2 Annealed Importance Sampling

The marginal likelihood (7) comes in the form of anm dimensional integral wherem is the number
of data points. A simple approach would be to use importance sampling with the EP or Laplace’s
approximation of the posterior as proposal distribution. However, for theGPC model the resulting
importance weights show enormous variances, making simple importance samplinguseless for this
task (MacKay, 2003, ch. 29).

Neal (2001) describes Annealed Importance Sampling (AIS), which we will use to estimate the
marginal likelihood in the GPC model. Instead of solving the integral (7) directly, a sequence of
easier quantities is computed. We define:

Zt =
Z

p(y|f)τ(t)p(f|X,θ)df (28)

whereτ(t) is an inverse temperature schedule such thatτ(0) = 0 andτ(T) = 1. The trick is to
rewrite the marginal likelihoodZ = p(D|θ) as a fraction and expand:

Z =
ZT

Z0
=

ZT

ZT−1

ZT−1

ZT−2
· · · Z1

Z0
, (29)
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Algorithm 3 Annealed Importance Sampling
Given: Temperature scheduleτ
for r = 1, . . . ,Rdo

Samplef0 from the priorN (f|0,K)
for t = 1, . . . ,T do

Sampleft from q(f|D,τ(t),θ) by HMC
Compute ln(Zt/Zt−1) using (31)

end for
ComputeZr using (32)

end for
Return lnZ = ln

(

1
R ∑R

r=1Zr
)

whereZ0 = 1 since the prior normalises. Each term in (29) is approximated using importance
sampling using samples fromq(f|D,θ,τ(t)) ∝ p(y|f)τ(t)p(f|X,θ):

Zt

Zt−1
=

Z

p(y|f)τ(t)p(f|X,θ)

p(y|f)τ(t−1)p(f|X,θ)
q(f|D,θ,τ(t−1))df (30a)

' 1
S

S

∑
i=1

p(y|f i)
τ(t)−τ(t−1) (30b)

wheref i are samples fromq(f|D,θ,τ(t)), which we generate using HMC. Using a single sample
S= 1 and a large number of temperatures, the log of each ratio is:

ln(Zt/Zt−1) '
(

τ(t)− τ(t−1)
)

ln p(y|ft) (31)

whereft is the only sample at temperatureτ(t). Combining (29) with (31) we obtain the desired:

lnZ'
T

∑
t=1

ln(Zt/Zt−1). (32)

In all our experiments we useτ(t) = (t/T)4 for t = 0, . . . ,8000. Using this temperature schedule
we found that the sampling spends most of its efforts at temperatures with highvariance of (31)
such that the variance of (32) is relatively small. Note that this was only examined on the data
sets we use below and only for certain values ofθ. So far, we have described Thermodynamic
Integration, which gives an unbiased estimate in the limit of slow temperature changes. In AIS the
bias caused by finite temperature schedules is removed by combining multiple estimates by their
geometric mean (see Algorithm 3). In the experiments we combine the estimates ofR= 3 runs of
Thermodynamic Integration.

7. Experiments

In this section we compare and inspect approximations for GPC using various benchmark data sets.
The primary focus is not to optimise the absolute performance of GPC models but to compare the
relative accuracy of approximations and to validate the arguments given in Section 5.

In all the GPC experiments we use a covariance function of the form:

k(x,x′,θ) = σ2exp
(

− 1
2`2

∥

∥x−x′
∥

∥

2)
, (33)
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Figure 3: Synthetic classification problem: Panel (a) illustrates the classification task, the gen-
erating p(y|x) and two approximations thereof obtained by Laplace’s method and
EP. Panel (b) illustrates the approximate predictive distributionsp( f∗|D,θ,x∗) '
N ( f∗|µ∗,σ2

∗) of latent function values showing the meanµ∗ and the range of±2σ∗.

such thatθ = [σ, `]. We refer toσ2 as the signal variance and to` as the characteristic length-
scale. Note that for many classification tasks it may be reasonable to use an individual length scale
parameter for every input dimension (ARD). Nevertheless, for the sakeof presentability we use the
above covariance function and we believe the conclusions to be independent of this choice.

Both analytic approximations have a computational complexity which is cubicO(m3) as com-
mon among non-sparse GP models due to inversionsm×m matrices. In our implementations
Laplace’s method and EP need similar running times, on the order of a few minutes for several
hundred data-points. Making AIS work efficiently requires some fine-tuning and a single estimate
of p(D|θ) can take several hours for data sets of a few hundred examples, but this could conceivably
be improved upon.

7.1 Synthetic Classification Problem

The first experiment is a synthetic classification problem with scalar inputs. The observations for
class 1 were generated from two normal distributions with means−6 and 2, each with a standard
deviation of 0.8. For class−1 the mean is 0 and the same standard deviation was used.
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We computed Laplace’s and the EP approximation for the ML-II estimated valueof θ that max-
imised Laplace’s approximation to the marginal likelihood (15). Note that this particular choice ofθ
should be in favour of Laplace’s method. Figure 3 shows the resulting classifiers and the underlying
latent functions. In Figure 3(a) the approximations top(y|x) appear to be similar for positivex but
we observe an appreciable discrepancy for negative values. Laplace’s approximation gives an un-
reasonably high predictive uncertainty, which is caused by a significantoverlap of the approximate
predictive distributionp( f∗|D,θ,x∗) ' N ( f∗|µ∗,σ2

∗) with zero as shown in Figure 3(b). However,
note that both approximations agree on the sign of the predictive mean.

7.2 Ionosphere Data

The data consists of 351 examples in 34 dimensions. We standardised the inputs X to zero mean
and unit variance. The training set is a random subset of sizem= 200 leaving the remaining 151
instances out as a test set.

We do an exhaustive investigation on a regular 21×21 grid of values for the log hyper-parameters.
For eachθ on the grid we compute the approximated log marginal likelihood by Laplace’s method
(15), EP (27) and AIS. Additionally we compute the predictive performance on the test set. As
performance measure we use the average information in bits of the predictions about the test targets
in excess of that of random guessing. Letp∗ = p(y∗= 1|x∗) be the model’s prediction, then we
average:

I(p∗i ,yi) = yi+1
2 log2(p∗i )+ 1−yi

2 log2(1− p∗i )+H (34)

over all test cases, whereH is the entropy of the training set labels. Results are shown in Figure 4.
For all three approximation techniques we see an agreement between marginal likelihood esti-

mates and test performance, which justifies the use of ML-II parameter estimation. But the shape of
the contours and the values differ between the methods. The contours forLaplace’s method appear
to beslantedcompared to EP. The estimated marginal likelihood estimates of EP and AIS agree
very well.2 The EP predictions contain as much information about the test cases as the MCMC
predictions and significantly more than for Laplace’s method.

Note that for small signal variances (roughly ln(σ2) < 0) Laplace’s method and EP give very
similar results. A possible explanation is that for small signal variances the likelihood does not
truncatethe prior but onlydown-weightsthe tail that disagrees with the observation. As an effect
the posterior will be less skewed and both approximations will lead to similar results.

7.3 USPS Digits

We define a binary sub-problem from the USPS digit data3 by considering 3’s vs. 5’s. We repeated
the experiments described in the previous section for a slightly modified grid ofθ. Comparing the
results shown in Figure 5 leads to similar results as mentioned above. The EP and MCMC results
agree very well, given that the marginal likelihood comes as a 767 dimensional integral.

We now take a closer look at the approximationsq(f|D,θ) = N (f|m,A) for a given value ofθ.
We have chosen the values ln(σ) = 3.35 and ln(`) = 2.85 which are between the ML-II estimates of
EP and Laplace’s method. Comparing the respective means of the approximations in Figure 6(a) we

2. Note that the agreement between the two seems to be limited by the accuracy of the AIS runs, as judged by the
regularity of the contour lines; the tolerance is less than one unit on a (natural) log scale.

3. Because the training and test partitions in the original data differ significantly, we pooled cases and randomly divided
them into new sets, with 767 cases for training and 773 for testing.
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Figure 4: Comparison of marginal likelihood approximations and predictive performances for the
Ionosphere data set. The first column shows the estimates of log marginal likelihood,
while the second column shows the performance on the test set measured bythe informa-
tion about test targets in bits (34).
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Figure 5: Comparison of marginal likelihood approximations and predictive performances of the
different methods for classifying 3’s vs. 5’s from the USPS image database. The plots are
arranged as in Figure 4.
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Figure 6: Comparison of approximationsq(f|D,θ) = N (f|m,A) for a given value ofθ. Panel (a)
shows a comparison of the meansmi . In Panel (b) we compare the elements of the diago-
nal matricesW ii andΣii . Panels (c) and (d) compare predictionsp∗ obtained by MCMC
(abscissa) to predictions obtained from Laplace’s method and EP (ordinate). Panel (c)
shows predictions on training cases and (d) shows predictions on test cases.

see that the magnitude of the means from the Laplace approximation is much smallerthan from EP.
The relation appears to be roughly linear. In Figure 6(b) we compare the elements ofW andΣ

−1

which cause the difference in the approximations (13) and (18) of the posterior covariance matrixA.
We observe that the relatively large entries inW are larger than the corresponding entries inΣ

−1,
but in totalW contains more small values thanΣ−1. The exact effect on the posterior covariance
is difficult to characterise due to the inversion, but intuitively the smaller the values the more the
posterior covariance will be similar to the prior.
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Figures 6(c-d) compare the predictive uncertaintyp∗ resulting from the respective approxima-
tions to MCMC predictions. For both training and test set we observe that EPand MCMC agree
very well, while Laplace’s method shows over-conservative predictions.

−15 −10 −5 0 5
0

0.05

0.1

0.15

0.2

f

MCMC samples
Laplace p(f|D)
EP p(f|D)

−40 −30 −20 −10 0 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

f

MCMC samples
Laplace p(f|D)
EP p(f|D)

(a) (b)

Figure 7: Two marginal distributionsp( fi |D,θ) from the posterior. For Panel (a) we picked the
fi for which the posterior marginal is maximally skewed (see again Figure 1). The true
posterior is approximated by a normalised histogram of 9000 samples offi obtained by
MCMC sampling. Panel (b) shows a case where EP and Laplace’s approximation differ
significantly.

We now inspect the marginal distributionsp( fi |D,θ) of single latent function values under the
posterior approximation. We use hybrid MCMC to generate 9000 samples from the posterior off
for the aboveθ. For Laplace’s method and EP the approximated distribution isN ( fi |mi ,A ii ) where
m andA are found by the respective approximation techniques.

In general we observe that the marginal distributions of MCMC samples agree very well with
the respective marginal distributions of the EP approximation. This supportsthe claim made in
Section 5 where we argued that the marginal distributions of the posterior can be very similar to
Gaussians, even if the posterior is a skew distribution. For Laplace’s approximation we find the
mean to be underestimated and the marginal distributions to overlap with zero farmore than the
EP approximations. Figure 7(a) displays the marginal distribution and its approximations for which
the MCMC samples show maximal skewness. Figure 7(b) shows a typical example where the
EP approximation agrees very well with the MCMC samples. We show this particular example
because under the EP approximationq(yi = 1|D,θ) < 0.1% but Laplace’s approximation gives
q(yi = 1|D,θ)' 18%.

7.4 Lower Bound Approximation

In the context of sparse EP approximations Seeger (2003) proposed alower bound on the marginal
likelihood. The bound is obtained from the EP approximation of the posterior using Jensen’s in-
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Figure 8: Lower bound on marginal likelihood. Panel (a) shows the lowerbound eq. (35) on the
marginal likelihood for the Ionosphere data set (compare to left column of Figure 4).
Panel (b) shows the value of the lower bound for the USPS 3’s vs. 5’s (compare to left
column of Figure 5)

equality:

ln p(D|θ) = ln
Z

p(y|f)N (f|0,K)df (35a)

≥
Z

N (f|m,A) ln
p(y|f)N (f|0,K)

N (f|m,A)
df (35b)

=
m

∑
i=1

Z

N ( fi |mi ,A ii ) lnΦ(yi fi)d fi

−1
2

m>K−1m− 1
2

tr(K−1A)+
1
2

ln |K−1A|+ m
2

. (35c)

Note that the one dimensional integrals in eq. (35c) have to be solved using numerical integration
methods.

In sparse EP methods the Gaussian approximation is based on only a subsetof observations
and so the evidence (27) may be a bad approximation of the total evidence since it does not take
all available data into account. Assume that them points are only a subset of of a total ofm′

observations. The lower bound (35c) can be extended to a lower boundon all m′ observations by
including all points in the one dimensional integrals over the individual log likelihood terms.

Several authors maximise this lower bound instead of maximising (27) for ML-II hyper-parameter
estimation also in the case of non-sparse EP approximations, e.g. Chu and Ghahramani (2005). In
Figure 8 we show the value of the lower bound as a function of the hyper-parameters for the Iono-
sphere and USPS data described in the previous sections (for the full EPapproximation). Interest-
ingly, for both data sets the lower bounds appear to be more similar to the approximate evidence
obtained by Laplace’s method than by EP (compare to the upper left panel inFigures 4 and 5
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respectively). However, the maxima of the lower bounds correspond to sub-optimal predictive per-
formances compared to the maxima of the approximate marginal likelihood (27) (compare to the
second row in Figures 4 and 5 respectively). Therefore for non-sparse EP approximations the use
of (27) seems advisable, which is also computationally advantageous.

7.5 Benchmark Data Sets

In this section we compare the performance of Laplace’s method and Expectation Propagation for
GPC on several well known benchmark problems for binary classification.

The Ionosphere, theWisconsinBreast Cancer, and theSonardata sets are taken from Hettich
et al. (1998). The LeptograpsusCrabsand thePima Indians Diabetes data sets were described by
Ripley (1996). Note that for the Crabs data set we use the sex (not the colour) of the crabs as target
variable. The largest data set in the comparison are the 3’s vs. 5’s fromthe USPS handwritten digits
described above.

We standardise the inputsX to zero mean and unit variance. All data sets are randomly split
into 10 folds of which one at a time is left out as a test set to measure the predictive performance of
a model trained (or selected) on the remaining nine folds.

For GPC we implement model selection by ML-II hyper-parameter estimation. Weuse a con-
jugate gradient optimisation routine to find a minimum

θML = argmin
θ

− lnq(D|θ) (36)

of the negative log marginal likelihood approximated by Laplace’s method (15) and EP (27) respec-
tively. For the respectiveθML the approximationsN (f|m,A) are computed and predictions are made
for the left out test set. From the predictive distributions the average information (34) is computed
and averaged over the ten folds. Furthermore the average error rate Eis reported, which equals the
average percentage of erroneous class assignments if prediction is understood as a decision problem
with symmetric costs (thresholding the predictive uncertainty at 1/2).

In order to have a better absolute impression of the predictive performance we report the results
of support vector machines (SVM) (Schölkopf and Smola, 2002). We use the LIBSVM implemen-
tation of C-SVM by Chang and Lin (2001) with a radial basis function kernel which is equivalent
to the covariance function (33) up to the signal variance parameter. The values of the length scale
parameter̀ and the regularisation parameterC are found by aninner loopof 5-fold cross-validation
on the nine training folds respectively. We manually refine the parameter grids and repeat the cross-
validation procedure until the performance stabilises.

We use the technique described by Platt (2000) to estimate predictive probabilities from an
SVM. This is implemented by fitting a sigmoidal mapping from the unthresholded output of the
SVM to the unit interval. The parameters of the mapping are estimated on the test set in the inner
loop of 5-fold cross-validation.

Results are summarised in Table 1. Comparing Laplace’s method to EP the latter shows to be
more accurate both in terms of error rate and information. While the error rates are relatively similar
the predictive distribution obtained by EP shows to be more informative aboutthe test targets. As
to be expected by now, the length of the mean vector‖m‖ shows much larger values for the EP
approximations. Comparing EP and SVM the results are mixed.

At first sight it may seem surprising that Laplace’s method gives relatively similar error rates
compared to EP. Note that for both methods the error rate only depends on the sign of the latent
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Laplace EP SVM
Data Set m n E I ‖m‖ E I ‖m‖ E I

Ionosphere 351 34 8.84 0.591 49.96 7.99 0.661 124.94 5.69 0.681
Wisconsin 683 9 3.21 0.804 62.62 3.21 0.805 84.95 3.21 0.795

Pima Indians 768 8 22.77 0.252 29.05 22.63 0.253 47.49 23.01 0.232
Crabs 200 7 2.0 0.682 112.34 2.0 0.908 2552.97 2.0 0.047
Sonar 208 60 15.36 0.439 26.86 13.85 0.537 15678.55 11.14 0.567

USPS 3 vs 51540 256 2.27 0.849 163.05 2.21 0.902 22011.70 2.01 0.918

Table 1: Results for benchmark data sets. The first three columns give thename of the data set,
number of observationm and dimension of inputsn. For Laplace’s method and EP the
table reports the average error rate E, the average information I (34) and the average length
‖m‖ of the mean vector of the Gaussian approximation. For SVMs the error rate and the
average information about the test targets are reported.

mean function (5a) at the test locations, which in turn depend onm only. Therefore the error rate
is less sensitive to the accuracy of the approximation to the posterior, but ofcourse depends on the
ML-II estimated hyper-parameters, which differ between the methods. Alsoin the example shown
in Figure 3(b) it can be observed that the latent mean functions differ buttheir sign matches very
accurately.

For the Crabs data set all methods show the same error rate but the information content of the
predictive distributions differs dramatically. For some test cases the SVM predicts the wrong class
with large certainty. Because the mapping of the unthresholded output of theSVM to the predictive
probability is estimated from a left out set, the mapping can be poor if too few errors are observed
on this.

8. Conclusions

Our experiments reveal serious differences between Laplace’s methodand EP when used in GPC
models. The results corroborate the considerations about the two approximations based on the
structure of the posterior given in Section 5. Although only a handful of data sets have been used in
the study, we believe the conclusions to be well-founded and generally valid.

From the structural properties of the posterior we described why Laplace’s method systemati-
cally underestimates the meanm. The resulting approximate posterior GP over latent functions will
have too small amplitude, although the sign of the mean function will be mostly correct. As an ef-
fect Laplace’s method gives over-conservative predictive probabilities, and diminished information
about the test labels. This effect has been shown empirically on severalreal world examples. Large
resulting discrepancies in the actual posterior probabilities were found, even at the training loca-
tions, which renders the predictive class probabilities produced under this approximation grossly
inaccurate. Note, the difference becomes less dramatic if we only considerthe classification error
rates obtained by thresholdingp∗ at 1/2. For this particular task, we have seen the sign of the la-
tent function tends to be correct (at least at the training locations). However, the performance on
benchmark data sets also revealed the error rates obtained by Laplace’smethod to be inferior to EP
results.
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The EP approximation has shown to give results very close to MCMC both in terms of predictive
distributions and marginal likelihood estimates. We have shown and explained why the marginal
distributions of the posterior can be well approximated by Gaussians.

Further, the marginal likelihood values obtained by Laplace’s method and EPdiffer systemat-
ically which will lead to different results of ML-II hyper-parameter estimation. The discrepancies
are similar for different tasks. We were able to exemplify that the EP approximation of the marginal
likelihood is accurate. To show this we described how AIS can be used to obtain unbiased estimates
of the marginal likelihood for Gaussian process models.

In the experiments summarised in Table 1 we compared the predictive accuracy of GPC to sup-
port vector machines. While the SVMs show a tendency to give lower errorrates, the information
contained in predictive distributions seems comparable. Conceptually GPC comes with the advan-
tage that the Bayesian model selection can be used to set hyper-parameters by ML-II estimation,
while the parameters of an SVM usually have to be set by cross-validation (gradient based methods
exist, see e.g. Chapelle et al. (2002)).

In summary, we found that EP is the method of choice for approximate inference in binary GPC
models, when the computational cost of MCMC is prohibitive. Very good agreement is achieved
for both predictive probabilities and marginal likelihood estimates. In contrast, the Laplace approx-
imation is so inaccurate that we advise against its use, especially when predictive probabilities are
to be taken seriously.
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Appendix A. Implementation of Laplace’s Approximation

In Sections 3 we described Laplace’s method for approximate inference inthe GPC model and
sketched the corresponding computations in Algorithm 1. In this appendix wedescribe our imple-
mentation of the method in more detail. See also the appendices of Williams and Barber (1998).

Computing Laplace’s approximationN (f|m,A) for given θ the main computational effort is
involved in finding the maximum of the unnormalised log posterior lnQ (eq. (8)). Our implementa-
tion uses Newton’s method to find the mode. In each Newton step the vectorf is updated according
to

ft+1 = ft − (∇∇f lnQ (ft))−1∇f lnQ (ft) (37a)

= (K−1 +W)−1(Wf t +∇f lnL(ft)) (37b)

until convergence off to the modem. To ensure convergence the update is accepted if the value of
the target function increases, otherwise the the step size is shortened untillnQ (ft+1) > lnQ (ft).

Computationally Newtons’s method is dominated by the repeated inversion of the Hessian.
SinceK can be poorly conditioned we use the identity

(K−1 +W)−1 = K −KW
1
2 (I +W

1
2 KW

1
2 )−1W

1
2 K (38)
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such that only the well conditioned, positive definite matrix(I + W
1
2 KW

1
2 ) has to be inverted. In

our implementation the inverse is computed from a Cholesky decomposition of this matrix. Note
thatW is a diagonal matrix with positive entries, so computingW

1
2 is trivial.

Note that implementing the Newton updates (37) only requires theproductof the inverse Hes-
sian times the gradient which can be computed more efficiently using an iterativeconjugate gradient
method (Golub and Van Loan, 1989, ch. 10).

Having found the modem the marginal likelihood approximation (15) and its derivatives can be
computed. The approximate marginal likelihood takes the form

lnq(D|θ) = lnQ (m)+
m
2

ln(2π)+
1
2

ln |A| (39a)

= lnL(m)− 1
2

m>K−1m− 1
2

ln |I +KW | . (39b)

To avoid the direct inversion ofK in the second term of (39b) we use the recurrence relation (37b).
Let a = K−1m then by substituting (38) into (37b) we obtain:

a = (I −W
1
2 (I +W

1
2 KW

1
2 )−1W

1
2 K)(Wm +∇f lnL(m)) (40)

such thatm>K−1m = m>a. The determinant in eq. (39b) can be rewritten

ln |I +KW |= ln
∣

∣I +W
1
2 KW

1
2
∣

∣ (41)

and computed from the Cholesky decomposition, that was used to calculate theinverse in eq. (38).
Note that ifM = LL > is a Cholesky decomposition then ln|M |= 2∑ lnL ii .

During ML-II estimation (36) of hyper-parameters the approximate log marginal likelihood (39)
is maximised as a function ofθ. Our implementation is based on a conjugate gradient optimisation
routine such that we also need to compute the derivatives of (39b) with respect to the elements ofθ.

The dependency of the approximate marginal likelihood onθ is two-fold:

∂ lnq(D|θ)

∂θi
= ∑

k,l

∂ lnq(D|θ)

∂K kl

∂K kl

∂θi
+

∂ lnq(D|θ)

∂m>
∂m
∂θi

(42)

there is a direct dependency via the terms involvingK and an implicit dependency through the
change inm (see also Williams and Barber (1998, Appendix B)).

The explicit derivative of eq. (39b) due to the direct dependency of the covariance matrix is

∑
k,l

∂ lnq(D|θ)

∂K kl

∂K kl

∂θi
=

1
2

m>K−1 ∂K
∂θi

K−1m− 1
2

tr

(

(I +KW )−1 ∂K
∂θi

W
)

(43)

where the first term is computed usinga (40) and the inverse in the second term can be rewritten as

(I +KW )−1 = I − (K−1 +W)−1W (44)

where the inverse (38) is already known.
The implicit derivative accounts for the dependency of eq. (39b) onθ due to change in the mode

m. Differentiating eq. (39a) with respect tom reduces to∂ ln |A|/∂m sincem is the maximum of
lnQ and therefore∂ lnQ /∂m vanishes.

∂ lnq(D|θ)

∂m>
∂m
∂θi

= −1
2

∂|K−1 +W|
∂m>

∂m
∂θi

= −1
2
(K−1 +W)−1 ∂W

∂m>
∂m
∂θi

(45)
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The dependency ofm onθi is obtained by differentiating (11a) atm:

0 = ∇f lnL(m)−K−1m =⇒ m = K∇f lnL(m) (46)

so
∂m
∂θi

=
∂K
∂θi

∇f lnL(m)+K∇∇f lnL(m)
∂m
∂θi

= (I +KW )−1 ∂K
∂θi

∇f lnL(m) (47)

and we have both terms necessary to compute the gradient (42).
To compute the predictive probabilityp∗ = p(y∗=1|x∗) for a test inputx∗ the predictive distri-

bution (5) of the latent function value isN ( f∗|µ∗,σ2
∗) where

µ∗ = k>∗ K−1m = k>∗ a (48a)

σ2
∗ = k(x∗,x∗)−k>∗W

1
2 (I +W

1
2 KW

1
2 )−1W

1
2 k∗ (48b)

andp∗ can be computed from eq. (6).
Due to the Cholesky decomposition in (38) computing Laplace’s approximation isO(m3). How-

ever, following the implementation we described in this section a Cholesky decomposition has to be
computed once per Newton step and all other quantities can be computed fromit in at mostO(m2).
The number of Newton steps necessary depends on the convergence criterion, the initialisation off
and the hyper-parametersθ.

Appendix B. Implementation of Expectation Propagation

In this appendix we describe details of our implementation of EP as described inSection 4 and
summarised in Algorithm 2. See also the appendices of Seeger (2003).

In our implementation the site functions (17) are parameterised in terms of natural parameters
σ−2

i andσ−2
i µi . For givenθ the algorithm starts by initialisingA = K andσ−2

i = 0 andσ−2
i µi = 0.

The algorithm proceeds by updating the site parameters in random order. In each sweep every site
function is updated following equations (23), (25), and (26). After each update of a site function the
effect onm andA has to be computed according to (18). The change inA can be computed using a
rank one update. Letδ be the change inσ−2

i due to the update andei the vector whoseith entry is 1
and all other 0. The relation

(K−1 +Σ
−1 +δeie>i )−1 = A−Aei(A ii +δ−1)−1e>i A (49)

can be used to updateA. Each single update isO(m2) and repeatedm times per sweep, such that the
EP algorithm isO(m3) in time. Because of accumulating numerical errors, after a complete sweep
over all site functions we recompute the matrixA from scratch. For numerical stability we rewrite

A = (K−1 +Σ
−1)−1 = K −KΣ

− 1
2 (I +Σ

− 1
2 KΣ

− 1
2 )−1

Σ
− 1

2 K (50)

and compute the inverse from the Cholesky decomposition of(I +Σ
− 1

2 KΣ
− 1

2 ).
After convergence the approximate log marginal likelihood (27) can be computed and its partial

derivatives with respect to the hyper-parameters:

∂ lnq(D|θ)

∂θi
=−1

2
tr

(

∂K
∂θi

(

(K +Σ)−1− (K +Σ)−1µµ>(K +Σ)−1
)

)

. (51)
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which do not depend on theZi (Seeger, 2005).
The inverse ofK +Σ can be computed from the inverse in eq. (50):

(K +Σ)−1 = Σ
− 1

2 (I +Σ
− 1

2 KΣ
− 1

2 )−1
Σ
− 1

2 . (52)

For computing the log marginal likelihood (27) also the determinant|K +Σ| has to be computed.
By rewriting

ln |K +Σ|= ln(|Σ||I +Σ
−1K |) = ln |Σ|+ ln |I +Σ

− 1
2 KΣ

− 1
2 | (53)

we obtain an expression in which the first term is a determinant of a diagonalmatrix and the second
term can be computed from the Cholesky decomposition that was used to compute the inverse in
eq. (50).

To compute the predictive probabilityp∗ = p(y∗=1|x∗) for a test inputx∗ the predictive distri-
bution (5) of the latent function value isN ( f∗|µ∗,σ2

∗) where

µ∗ = k>∗ (K +Σ)−1µ (54a)

σ2
∗ = k(x∗,x∗)−k>∗ (K +Σ)−1k∗ (54b)

andp∗ can be computed from eq. (6).
The EP algorithm is of computational complexityO(m3) due to the computations for updat-

ing A. However, per sweep the computation ofA (50) and them rank one updates sum to more
computational effort compared to Laplace’s method.

Using a covariance function of the form (33) for some data sets we observed numerical problems
during ML-II hyper-parameter estimation because the optimisation algorithm asked to evaluate the
marginal likelihood for extremely large signal variancesσ2. The problem stems from the property
that for large values ofσ2 the marginal likelihood becomes insensitive to changes inσ2. At this
point it is recommended to take another look at Figure 1(b). Intuitively, forlarge signal variances
the prior becomes more spread, such that the likelihood becomes more and more similar to a hard
truncation. The marginal likelihood equals the probability mass of the prior in theorthant that is left
after truncation. But the probability mass in any of the orthants remains constant if only the signal
variance is changed for fixed correlation structure. This argument is based on the assumption that
the likelihood implements a hard truncation, which is only an approximation, but thisapproximation
becomes better the largerσ2 is. Note that this insensitivity of the marginal likelihood with respect
to changes in the signal variance can already be observed in the upper parts of of the marginal
likelihood plots for EP in Figures 4 and 5. A possible solution to this problem is to limitσ2 < 105,
say, since we wouldn’t typically expect any new interesting behaviour beyond this.
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